skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McDonald, Anthony_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ObjectiveOur objectives were to assess the efficacy of active inference models for capturing driver takeovers from automated vehicles and to evaluate the links between model parameters and self-reported cognitive fatigue, trust, and situation awareness. BackgroundControl transitions between human drivers and automation pose a substantial safety and performance risk. Models of driver behavior that predict these transitions from data are a critical tool for designing safer, human-centered, systems but current models do not sufficiently account for human factors. Active inference theory is a promising approach to integrate human factors because of its grounding in cognition and translation to a quantitative modeling framework. MethodWe used data from a driving simulation to develop an active inference model of takeover performance. After validating the model’s predictions, we used Bayesian regression with a spike and slab prior to assess substantial correlations between model parameters and self-reported trust, situation awareness, fatigue, and demographic factors. ResultsThe model accurately captured driving takeover times. The regression results showed that increases in cognitive fatigue were associated with increased uncertainty about the need to takeover, attributable to mapping observations to environmental states. Higher situation awareness was correlated with a more precise understanding of the environment and state transitions. Higher trust was associated with increased variance in environmental conditions associated with environmental states. ConclusionThe results align with prior theory on trust and active inference and provide a critical connection between complex driver states and interpretable model parameters. ApplicationThe active inference framework can be used in the testing and validation of automated vehicle technology to calibrate design parameters to ensure safety. 
    more » « less
  2. This study employs a discrete event simulation (DES) model to understand the dynamic workload of remote truck operators managing partially-automated trucks. The DES model uses operator queues and event generators simulating automated truck events and leverages data from the California DMV’s disengagement database and driving simulation experiments. Disengagement data were partitioned into three groups by disengagement frequency: low, moderate, and high and separate arrival time distributions were developed for each group. Simulations from the model suggest that for companies with low disengagement rates, operator utilization will likely remain below minimal thresholds to prevent boredom. In contrast, companies with moderate or high disengagement rates both exceed operator utilization capacity and generate prolonged wait times as more trucks are controlled. These findings suggest that calibrating remote truck control to human capabilities will be challenging. A sensitivity analysis suggests that accurately estimating disengagement rates will be crucial for model accuracy and predictive performance. 
    more » « less
  3. Driver reliance on automated vehicles (AV) is a critical component of safety particularly during high-risk traffic scenarios. Factors that influence reliance, including trust, situation awareness, fatigue, and demographics, have been independently explored; however, few analyses have investigated predicting AV reliance and compared factors comprehensively. The goals of this study were to develop a random forest (RF) model to predict reliance and to analyze the importance of factors for reliance decisions. We leveraged data from a driving simulation study where participants encountered four traffic events including responding to an illegal vehicle crossing, managing construction zones, stopping at a vandalized stop sign, and a pedestrian detection task. The dataset included reliance decisions and subjective assessments of dispositional trust, situational trust, fatigue, and workload. An RF model fit to the dataset using cross validation achieved an average AUC of 0.81 and accuracy of 0.77 and situational trust emerged as the most influential predictor. 
    more » « less
  4. Transitions of control are an important safety concern for human-automation teams and automated vehicle safety. While trust and situation awareness have been observed to influence transitions of control in automated vehicles, there are few objective measurements, making these concepts difficult to operationalize in increasingly automated decision systems. In this study, we take a step towards quantifying trust by mapping latent driver beliefs extracted from an active inference-factor analysis model of driver behavior and cognitive dynamics to subjective responses to trust questionnaires. Our results show that subjective trust is primarily correlated with model parameters affecting perceptual evidence accumulation rate, and the same parameters are significantly correlated with driver age. 
    more » « less